Status
Rate
List
Check Later
Recent innovations in modern radar for designing transmitted waveforms, coupled with new algorithms for adaptively selecting the waveform parameters at each time step, have resulted in improvements in tracking performance. Of particular interest are waveforms that can be mathematically designed to have reduced ambiguity function sidelobes as their use can lead to an increase in the target state estimation accuracy Moreover, adaptively positioning the sidelobes can reveal weak target returns by reducing interference from stronger targets. The manuscript provides an overview of recent advances in the design of multicarrier phasecoded waveforms based on Bjorck constant-amplitude zero-autocorrelation (CAZAC) sequences for use in an adaptive waveform selection scheme for multiple target tracking. The adaptive waveform design is formulated using sequential Monte Carlo techniques that need to be matched to the highly resolution measurements. The work will be of interest to both practitioners and researchers in radar as well as to researchers in other applications where high resolution measurements can have significant benefits.